DÉDICASSE : DÉtecteur Dlamant Cvd pour la mesure de la CHRONO ENVIRONNEMENT radioactivité Alpha in Situ en Solutions et Eaux

Jean-Emmanuel Groetz, Christophe Mavon

Laboratoire Chrono-Environnement UMR CNRS 6249, Université de Franche-Comté, Besançon

Lynda Saidani, Bruno Vuillemin

Laboratoire Interdisciplinaire Carnot de Bourgogne UMR CNRS 6303, Université de Bourgogne, Dijon

- Sébastien Colas, Nicolas Saurel
- CEA, Centre de Valduc, 21120 Is-sur-Tille

Contexte : radioactivité α en milieu liquide

Besoin mesures α

- Activité totale des effluents liquides aval cycle du combustible
- Spectrométrie pour caractérisation actinides
- Surveillance environnementale
- eaux contaminées (rejets accidentels, mines et déchets)
- Iixiviats de STEP ou de décharges
- eaux potables (robinet, sources)

Spectrométrie α actuelle

Amélioration du procédé d'assemblage

L'amélioration du procédé initial est primordiale, car nous partions d'une diode commerciale encapsulée et d'une électrode BDD montée sur un wafer Si avec des couches intermédiaires de SiO₂ et Si₃N₄.

AEI 2022

MONTPELLIER

	2018-2019	DÉDICASSE	Avantages
Base BDD	Wafer Si (111)	Wafer Si (100)	Si (100) moins résistant
Isolant	SiO ₂ (~ 500 nm)		seulement sur BDD
Accroche	Si ₃ N ₄ (~ 200 nm)		pas nécessaire
Électrode	BDD (~ 300 nm)	BDD (~ 300 nm)	diamètres 1" et 2"
Diode	PIPS®	PIPS [®] 1" et 2" sur	planéité requise
	désencapsulée	plaque céramique	pour collage Au

- Diodes Si passivées (PIPS[®])
- Mesures en chambre à vide à l'abri de la lumière
- INTERSITE A Nécessité d'une préparation/séparation chimique
- Diodes Si mesure ambiante (CAM PIPS[®])
- utilisables à l'air libre
- résistantes à la corrosion et à l'humidité
- Mesures en milieu liquide impossible
- STOP Pas de mesures en temps réel

Wafer Si + diode

Cea

Diode PIPS[®]+ électrode BDD

Objectif : réalisation d'un détecteur blindé

Fonctions essentielles :

- Formation de la source α en surface du détecteur
- \rightarrow concentration des actinides
- Immersion du détecteur en solution
- → réalisation d'un détecteur blindé doté d'une électrode diamant CVD dopé bore (BDD)

Choix d'une cellule de mesure

Il s'avère nécessaire de disposer d'une cellule de mesure permettant la concentration des actinides en surface de l'électrode BDD. Deux types de cellule électrochimique ont été sélectionnées :

Cellule de Lewis à agitation mécanique (Thèse N. Schmitt)

- ✓ Agitation à ~ 600 tours/min
- ✓ Condition : écoulement laminaire au niveau de la cathode BDD
- \checkmark Création d'une couche de diffusion de \sim qq μ m en surface du capteur
- ✓ Gradient de pH et électroprécipitation des actinides par réduction de O₂ dissous
- Conditions difficiles à maîtriser

Choix de la technologie d'assemblage

Collage par thermocompression à T° ambiante (Thèse N. Schmitt, 2019)

Croissance BDD sur diode PIPS[®] problématique (zone morte, décohésion) Collage à l'or : pas de traitement thermique entraînant le recuit de la diode ✓ Dépôts SiO₂, Si₃N₄ et Ti/Au sur électrode BDD et Ti/Au sur diode PIPS[®] ✓ Nécessité d'enlever support Si et dépôts initiaux (érodage méca., gravure ionique) ✓ Procédé réalisé en collaboration avec Florent Bassignot (Femto-Engineering, Besançon)

Dépôt de Th sur électrode BDD

Cellule à écoulement de type wall-jet (projet DÉDICASSE)

- Cellule avec une buse d'entrée projetant un flux perpendiculaire au détecteur
- ✓ Simulation numérique par la méthode des éléments finis (MEF) des conditions d'écoulement laminaire au niveau de la cathode BDD (éq. de Navier-Stokes)
- ✓ Paramétrage des rayons des buses, des distances buse entrée-détecteur, des buses de sortie et du débit de la solution pour la création d'une couche de diffusion

Concentration à 1 mm de l'électrode BDD

Encapsulation du nouveau détecteur Préservation des propriétés du détecteur

Prototype 2019

Lignes du flux diffusif (simulation MEF)

Distribution de la concentration à proximité de l'électrode BDD

Références

- ▶ F. Bassignot, E. Courjon, G. Ulliac, S. Ballandras, J.-M. Lesage, R. Petit, Acoustic resonator based on periodically poled transducers : Fabrication and characterization, J. Appl. Phys. 112 (2012) 074108.
- ▷ N. Schmitt, Faisabilité et réalisation d'un détecteur silicium/électrode diamant CVD pour la spectrométrie α en milieu liquide, Thèse de doctorat de l'UBFC, soutenue le 10/12/2019.
- ▷ N. Schmitt, S. Colas, N. Saurel, F. Bassignot, B. Vuillemin, J.-E. Groetz, *Detector*electrode for alpha spectrometry in water sample, numerical and early feasibility investigation toward thermocompression bonding assembly, Nuclear Inst. and Methods in Physics Research A, 963 (2020) 163270.

INSU Atelier Expérimentation et Instrumentation 2022, 28/06-01/07, Montpellier

Contact : jegroetz@univ-fcomte.fr